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Several applications exist in which lattice Boltzmann methods (LBM) are used to compute
stationary states of fluid motions, particularly those driven or modulated by external
forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain
steady state convergence, particularly at low Mach numbers due to the disparity in char-
acteristic speeds of propagation of different quantities. In this paper, we present a precon-
ditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate
steady state convergence to flows driven by external forces. The use of multiple relaxation
times in the GLBE allows enhancement of the numerical stability. Particular focus is given
in preconditioning external forces, which can be spatially and temporally dependent. In
particular, correct forms of moment projections of source/forcing terms are derived such
that they recover preconditioned Navier–Stokes equations with non-uniform external
forces. As an illustration, we solve an extended system with a preconditioned lattice kinetic
equation for magnetic induction field at low magnetic Prandtl numbers, which imposes
Lorentz forces on the flow of conducting fluids. Computational studies, particularly in
three-dimensions, for canonical problems show that the number of time steps needed to
reach steady state is reduced by orders of magnitude with preconditioning. In addition,
the preconditioning approach resulted in significantly improved stability characteristics
when compared with the corresponding single relaxation time formulation.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the lattice Boltzmann method (LBM) has emerged as an alternative and accurate approach for computa-
tional physics, and, in particular, for computational fluid dynamics (CFD) problems [1,2]. It is generally based on minimal
discrete kinetic models whose emergent behavior, under appropriate constraints, corresponds to the dynamical equations
of fluid flows or other physical systems. It involves the solution of the lattice Boltzmann equation (LBE) that represents
the evolution of the distribution of particle populations due to their collisions and advection on a lattice. When the lattice,
which represents the discrete directions for propagation of particle populations, satisfies sufficient rotational symmetries,
the LBE recovers the weakly compressible Navier–Stokes equations (NSE) in the continuum limit. The LBE can be constructed
to simulate complex flows by incorporating additional physical models [3,4].
. All rights reserved.
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Though it evolved as a computationally efficient form of lattice gas cellular automata [5], it was well established about a
decade ago that the LBE is actually a much simplified form of the continuous Boltzmann equation [6,7]. As a result, several
previous results in discrete kinetic theory could be directly applied to the LBE. This led to, for example, improved physical
modeling in various situations, such as multiphase flows [8,9] and multicomponent flows [10], and in an asymptotic theory
suitable for rigorous numerical analysis [11]. In particular, the latter development has made it possible to study consistency,
convergence and accuracy of the LBE in a manner similar to the classical numerical methods for continuum based ap-
proaches. As a result of features of the stream-and-collide procedure of the LBE such as the algorithmic simplicity, amena-
bility to parallelization with near-linear scalability, and its ability to represent complex boundary conditions and incorporate
physical models more naturally, it has rapidly found a wide range of applications [12–16].

Several applications exist where steady state solutions to fluid flow problems are highly desirable. Examples include mag-
netohydrodynamic flows and multiphase porous media, where one is often mainly interested in investigations of their stea-
dy state characteristics. On the other hand, the standard form of the LBE is hyperbolic in nature and its solution involves
explicit marching in time. As a result, it necessarily involves evolving through a transient phase before reaching a stationary
state. Due to the need to march for many number of time steps in this transient phase, it incurs significant computational
cost. Another important related issue is that the LBE actually represents compressible NSE valid at low Mach numbers, Ma.
Its deviation from the incompressible NSE, which we shall call ‘‘compressibility deviations”, is independent of grid resolu-
tion. When one intends to simulate close to incompressible flow using LBE, such deviations (or the Ma) should be made smal-
ler. This is also desirable from a computational viewpoint as the stability regime of the LBE generally widens at lower Ma.
However, as the Ma is lowered, there is a greater disparity between the propagation speeds of density perturbations, i.e. the
speed of sound, and the convection speed of the fluid. In a hyperbolic system, the numerical domain of influence should
encompass the physical domain [17], requiring resolution of the time scales of the fluid motion. As a result, computing lower
Ma flows further compounds the issue and requires a larger number of time steps to achieve steady state convergence.

In recent years, several approaches have been proposed to improve the convergence rate of the LBE to steady state. These
include, in one category, reformulations of the LBE to time-independent versions that can be solved as a linear system [18,19]
and a finite-difference time-independent version solved by a multigrid method [20]. In another, they involve adding an arti-
ficial body force to the time-dependent LBE [21], constructing an implicit LBE in a finite-difference or finite-element formu-
lation that allows taking larger time steps [22–24], or by using a non-linear form of multigrid solver with a non-linear LBE
time stepping scheme [25]. All these schemes can significantly improve convergence rates, but at the cost of increased com-
plexity as compared with the standard LBE.

On the other hand, Guo et al. [26] proposed an alternate approach to reduce the number of time steps necessary for steady
state convergence by applying preconditioning to the LBE, while maintaining its simplicity. The essential principle of this
approach, which was originally developed for general hyperbolic schemes by Turkel and others, is as follows [27–30]. At
low Ma, in explicit formulations, there is a disparity in propagation speeds of density perturbation and fluid convection. This
is formally characterized by higher values of condition number, which is defined as the ratio of the fastest to the slowest
speeds of propagation, or equivalently, the ratio of the maximum to minimum eigenvalues of the hyperbolic system, and
is inversely proportional to Ma. By applying a preconditioner, the speeds of propagation of various quantities can be made
closer to one another. This can be achieved only at the cost of sacrificing the temporal accuracy of the solutions, which in any
case is not very important as the chief interest is in obtaining steady state flow characteristics. Guo et al. [26] achieved this in
the context of LBE by applying a preconditioning parameter that modifies the equilibrium distribution function in its colli-
sion model. Its emergent behavior is a preconditioned compressible NSE with reduced stiffness and hence significantly re-
duces the number of time steps to reach steady state.

All the preconditioning approaches for LBM mentioned above employ the single relaxation time (SRT) model [31] to rep-
resent the effect of particle collisions, with the exception of a recent work that adopts a different approach to precondition-
ing a general form of the LBE than considered here [32]. A commonly used form, the SRT-LBE involves relaxation of particle
distributions to their local equilibria at a rate determined by a single parameter [33,34]. On the other hand, an equivalent
representation of distribution functions is in terms of their moments, such as various hydrodynamic fields including density,
mass flux, and stress tensor. The relaxation process due to collisions can more naturally be described in terms of a space
spanned by such moments, which can in general relax at different rates. This forms the basis of the generalized lattice Boltz-
mann equation (GLBE) based on multiple relaxation times (MRT) [35–37]. By carefully separating the time scales of various
hydrodynamic and kinetic modes through a linear stability analysis, the numerical stability of the GLBE or MRT-LBE can be
significantly improved when compared with the SRT-LBE, particularly for more demanding problems at high Reynolds num-
bers [36]. The MRT-LBE has also been extended for multiphase flows [38–42], and, more recently, for magnetohydrodynamic
problems [43], with superior stability characteristics. It has also been used for LES of a class of turbulent flows [44–46]. It is
known that for a given grid resolution and Reynolds number, the standard LBM based on the SRT model becomes less stable
as Ma is lowered due to the relaxation time becoming smaller [47,26]. Since the preconditioning is mainly intended to accel-
erate steady state convergence at lower Ma, it is also important to stabilize the computations, which can be optimally
achieved by using the MRT-LBE.

Another consideration is how to precondition the LBE in the presence of external forces. While Guo et al. [26] suggest a
way to precondition a particular form of forcing term, details on preconditioning general forms of spatially and temporally
varying forcing terms are lacking. Such forms are important in many situations including magnetohydrodynamic (MHD)
flows, where the Lorentz force impressed on the fluid can vary spatially and temporally, and multiphase flows represented
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by mean-field models, and buoyant flows. Moreover, previous studies were limited to a narrower class of two-dimensional
(2D) flows, largely in the absence of any body force. In addition, dynamics of flow of complex fluids is generally represented
by a system of LBE, typically with one LBE representing the flow fields and another one characterizing the evolution of other
physical processes occurring within the fluid. For example, for MHD flow, we have one LBE to represent the fluid flow and
another one for the magnetic induction equation. Similarly, in the case of multiphase flows, we have two sets of LBE – one for
the fluid dynamics and another one for the dynamics of an order parameter that distinguishes the phases. Thus, it is also
important to extend the preconditioning to such systems of LBE.

It is important to note that preconditioning a system of LBE formally improves the condition number of its equivalent
macroscopic system. For example, in the context of MHD, preconditioning a system of LBE actually improves the condition
number of the equivalent system consisting of the NSE and the magnetic induction equation. As a result, while the conver-
gence rate of the LBE scheme, which is typically associated with an exponent, is unchanged, the prefactor of the convergence
rate is modified by preconditioning. In effect, the number of time steps needed to reach a steady state representation of the
equivalent macroscopic system is significantly reduced.

The primary objective of this paper is then to develop a preconditioning method for the MRT-LBE with general forms of
forcing terms representing non-uniform forces to accelerate convergence to steady state flows. In this regard, we derive
expressions for preconditioned equilibrium moments that gives rise to the linear viscous and non-linear convective behavior
of a fluid. Based on a Chapman–Enskog multiscale analysis [48], we also derive correct functional forms of the moment pro-
jections of source/forcing terms corresponding to spatially and temporally dependent variation of forces, which avoids dis-
crete lattice artifacts. A limiting case of the source terms for the SRT-LBE will also be presented. To illustrate the use of
preconditioning for a system of LBEs, we derive a preconditioned lattice kinetic model for MHD, and also provide a simple
approach to attain lower values of magnetic Prandtl number at steady state, which is important for simulating liquid metal
flows. We illustrate the advantages of these approaches for a set of canonical problems, particularly in three-dimensions
(3D). In doing so, we also present some new results with shear driven MHD flows. It may be noted that the approach pre-
sented here, though illustrated for MHD problems, may be readily extended to develop preconditioning to a system of MRT-
LBEs for a variety of other problems.

This paper is organized as follows. After a brief description of the generalized lattice Boltzmann equation with forcing
term in Section 2, in Section 3 we present a derivation of the preconditioned GLBE with forcing term in both 2D and 3D.
The corresponding preconditioned form of lattice kinetic equation for magnetic induction is discussed in Section 4. Some
canonical examples simulated using preconditioned LBM are discussed in Section 5. Finally, the summary and conclusions
of this paper are provided in Section 6.
2. Generalized lattice Boltzmann equation with forcing term

The lattice Boltzmann method computes the evolution of distribution functions as they move and collide on a lattice grid.
The collision process considers their relaxation to their local equilibrium values, and the streaming process describes their
movement along the characteristics directions given by a discrete particle velocity space represented by a lattice. Typical lat-
tice velocity models include the two-dimensional, nine velocity (D2Q9) and the three-dimensional, nineteen velocity (D3Q19)
models [33], which are considered in this paper. The particle velocity ea

! corresponding to the D2Q9 model may be written as
ea
!¼

ð0;0Þ a ¼ 0
ð�1; 0Þ; ð0;�1Þ a ¼ 1; . . . ;4
ð�1;�1Þ a ¼ 5; . . . ;8

8><>: ð1Þ
and for the D3Q19 model:
ea
!¼

ð0;0;0Þ a ¼ 0
ð�1; 0;0Þ; ð0;�1;0Þ; ð0;0;�1Þ a ¼ 1; . . . ;6
ð�1;�1;0Þ; ð�1;0;�1Þ; ð0;�1;�1Þ a ¼ 7; . . . ;18:

8><>: ð2Þ
The GLBE computes collisions in moment space, while the streaming process is performed in the usual particle velocity space
[37]. The form of the GLBE considered here [46] also computes the forcing term, which represents the effect of external forces
as a second-order accurate time-discretization, in moment space [39,46]. We use the following notation in our description of
the procedure below: In particle velocity space, the local distribution function f, its local equilibrium distribution feq, and the
source terms due to external forces S may be written as the following column vectors: f ¼ ½f0; f1; f2; . . . ; fb�y, feq ¼
½f eq

0 ; f eq
1 ; f eq

2 ; . . . ; f eq
b �
y, and S ¼ ½S0; S1; S2; . . . ; Sb�y, where b is the number of non-zero discrete velocity directions for a given lat-

tice model. Thus, b ¼ 8 and b ¼ 18 for D2Q9 and D3Q19 models, respectively. Here, the superscript y represents the trans-
pose operator.

In particular, the form of the source terms in particle velocity space are obtained from the expression used in the discrete
velocity Boltzmann equation� F

!
=q � r! e!a

fa by approximating it to � F
!
=q � r! e!a

f eq;M
a [49] and further simplifying by neglect-

ing terms of the order of OðMa2Þ or higher to get [39] Sa ¼ wa½3ð e!a � u!Þ þ 9ðea
!� u!Þ e!a� � F

!
where f eq;M

a ¼ waf1þ
3ea
!� u!þ 9=2ðea

!� u!Þ2 � 1=2 u!2g is the local discrete Maxwellian truncated to OðMa2Þ [33]. Here, wa is a weighting factor
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[33], q and u! are the local fluid density and velocity, respectively, and F
!

is the external force field, whose Cartesian com-
ponents are Fx, Fy and Fz.

The moments f̂ are related to the distribution function f through the relation f̂ ¼ T f where T is the transformation matrix.
Here, and in the following, the ‘‘hat” represents the moment space. The transformation matrix T is constructed such that the
collision matrix in moment space bK is a diagonal matrix through bK ¼ T KT �1, where K is the collision matrix in particle
velocity space. The elements of T are obtained in a suitable orthogonal basis as combinations of monomials of the Cartesian
components of the particle velocity ea

! through the standard Gram–Schmidt procedure, which are provided by Lallemand and
Luo [36] and d’Humières et al. [37] for 2D and 3D lattice models, respectively. Similarly, the equilibrium moments and the
source terms in moment space may be obtained through the transformation f̂eq ¼ T feq, bS ¼ T S. The components of moment
projections of these quantities are: f̂ ¼ ½f̂ 0; f̂ 1; f̂ 2; . . . ; f̂ b�y, f̂eq ¼ ½f̂ eq

0 ; f̂
eq
1 ; f̂

eq
2 ; . . . ; f̂ eq

b �
y, and bS ¼ ½bS0; bS1; bS2; . . . ; bSb�y. The expressions

for these quantities are provided in Appendix A for both D2Q9 and D3Q19 models.
The solution of the GLBE with forcing term can be written in terms of the following ‘‘effective” collision and streaming

steps, respectively:
~fð x!; tÞ ¼ fð x!; tÞ þ -ð x!; tÞ; ð3Þ
and
fað x!þ e!adt; t þ dtÞ ¼ ~f að x!; tÞ; ð4Þ
where the distribution function f ¼ ffaga¼0;1;...;b is updated due to ‘‘effective” collisions resulting in the post-collision distri-
bution function ~f ¼ f~f aga¼0;1;...;b before being shifted along the characteristic directions during the streaming step. The change
in distribution function due to collisions as a relaxation process and external forces is represented by -, and following Prem-
nath et al. [46] it can written as
-ð x!; tÞ ¼ T �1 �bK f̂ � f̂eq
� �

þ I � 1
2
bK� �bS� �

; ð5Þ
where I is the identity matrix and bK ¼ diagðs0; s1; . . . ; sbÞ is the diagonal collision matrix in moment space. Also, here and
henceforth, f̂ � f̂ð x!; tÞ, f̂eq � f̂eqð x!; tÞ and bS � bSð x!; tÞ.

It may be noted that Eqs. (3) and (4) are obtained from the second-order trapezoidal discretization of the source term in
the GLBE [39], viz., fað x!þ ea

!dt ; t þ dtÞ � fað x!; tÞ ¼ �
P

bKab½fbð x!; tÞ � f eq
b ð x!; tÞ� þua where ua ¼ 1=2½Sað x!; tÞþ Sað x!þ ea

!dt ;

t þ dtÞ�dt , which is made effectively time-explicit through a transformation f a ¼ fa � 1=2Sadt [49], and then dropping the
‘‘overbar” in subsequent representations for convenience. Subsequently, both the collision and source terms are represented
in the natural moment space of GLBE. The second-order discretization provides a more accurate treatment of source terms,
particulary in correctly recovering general forms of external forces in the continuum limit without spurious terms due to
discrete lattice effects [50], and its time-explicit representation facilitates numerical solution in a manner analogous to
the standard LBE.

Now, some of the relaxation times sa in the collision matrix, i.e. those corresponding to hydrodynamic modes can be re-
lated to the transport coefficients, such as the bulk and shear viscosities. The rest of the relaxation parameters, i.e. for the
kinetic modes, can be chosen through a von Neumann stability analysis of the linearized GLBE [36,37]. See also Appendix
A for more details.

Once the distribution function is known, the hydrodynamic fields, i.e., the density q, velocity u!, and pressure p can be
obtained as follows:
q ¼
Xb

a¼0

fa; j
!
� q u!¼

Xb

a¼0

fa e!a þ
1
2

F
!

dt ; p ¼ c2
s q; ð6Þ
where cs ¼ c=
ffiffiffi
3
p

with c ¼ dx=dt being the particle speed, and dx and dt are the lattice spacing and time step, respectively.
The computational procedure for the solution of the GLBE with forcing term is optimized by fully exploiting the special

properties of the transformation matrix T : these include its orthogonality, entries with many zero elements, and entries with
many common elements that are integers, which are used to form the most common sub-expressions for transformation
between spaces in avoiding direct matrix multiplications [37]. For details, we refer the reader to Ref. [46]. As a result of such
optimizations, the additional computational overhead when GLBE is used in lieu of the popular SRT-LBE is small, typically
between 15% and 30%, but with much enhanced numerical stability that allows maintaining solution fidelity on coarser grids
and also in simulating flows at higher Reynolds numbers.
3. Preconditioned generalized lattice Boltzmann equation with forcing term for fluid flow

As noted earlier, computation of flows at low Ma using the standard LBE can be slow to converge to steady state due to the
condition number of its equivalent NSE being large, as it is inversely proportional to Ma. Moreover, for a given Reynolds
number, there is a limit on how low Ma can be before numerical stability problems result, as the relaxation time in the stan-
dard LBE, s, can become very close to 0.5 when Ma is made smaller. Preconditioning effectively reduces the disparity in prop-
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agation speeds of density perturbation and fluid convection, or improves the condition number of the equivalent NSE being
simulated. The use of the GLBE or MRT-LBE improves numerical stability by appropriately tuning the relaxation times of the
non-hydrodynamic kinetic or ghost modes through a von Neumann stability analysis. We now present the preconditioned
generalized lattice Boltzmann equation with forcing term.

Several factors need to be considered in preconditioning the GLBE. The streaming step in the GLBE is a Lagrangian free-
flight or propagation process from one lattice node to another node. The collision process is a relaxation step that contains
linear, faster density propagation process and slower viscous momentum transfer process, and non-linear fluid convective
process. They are individually described in moment space and their separate effects or contributions need to be properly pre-
conditioned. Also, careful consideration should be given to the preconditioning of the forcing terms in moment space, as
their contributions, depending on the moment, vary widely, from simple Cartesian component of external forces to work
due to such forces. In particular, as noted in Appendix A, the moment projections of forcing terms are functions of external
force fields and velocities, and their products. Hence, care needs to be exercised in properly preconditioning individual com-
ponents of the forcing terms corresponding to hydrodynamic and kinetic or ghost modes. As in Guo et al. [26], we introduce a
preconditioning parameter c, with 0 < c 6 1, on the GLBE with forcing term. It may be noted that setting c equal to 1 reduces
to the standard form without preconditioning, while c < 1 improves the condition number of the equivalent NSE system of
the GLBE. By performing a Chapman–Enskog analysis on such GLBE, its preconditioning can be properly constructed such
that it recovers the corresponding preconditioned compressible NSE in the continuum limit. The details of this procedure
carried out for the D2Q9 model is presented in Appendix B, which can be extended to other lattice models.

The preconditioned GLBE with forcing term can be written in terms of the following ‘‘effective” collision and streaming
steps, respectively:
~fð x!; tÞ ¼ fð x!; tÞ þ -�ð x!; tÞ; ð7Þ
and
fað x!þ e!adt; t þ dtÞ ¼ ~f að x!; tÞ; ð8Þ
where -� represents the change in distribution function due to preconditioned collisional relaxation and forcing terms due to
external forces. It can be written as
-�ð x!; tÞ ¼ T �1 �bK� f̂ � f̂eq;�
� �

þ I � 1
2
bK�� �bS�� �

: ð9Þ
Here, I is the identity matrix, bK� is the preconditioned diagonal collision matrix in moment space, f̂eq;� is the preconditioned
equilibrium moments and bS� is the preconditioned moment projections of source terms due to external forces. Here, and in
the following, the superscript ‘‘*” denotes preconditioned variables.

The preconditioning of the components of the equilibrium moments
f̂eq;� ¼ f̂ eq;�
0 ; f̂ eq;�

1 ; f̂ eq;�
2 ; . . . ; f̂ eq;�

b

h iy
ð10Þ
which are functions of the conserved moments, can be performed by analyzing the GLBE using the Chapman–Enksog expan-

sion, as in Appendix B. The components of f̂eq;� can be written for the D2Q9 model as: f̂ eq;�
0 ¼ q; f̂ eq;�

1 � eeq;� ¼ �2qþ 3 j
!
� j
!

cq ;

f̂ eq;�
2 � e2;eq;� ¼ q� 3 j

!
� j
!

cq ; f̂ eq;�
3 ¼ jx; f̂

eq;�
4 � qeq;�

x ¼ �jx; f̂ eq;�
5 ¼ jy; f̂ eq;�

6 � qeq;�
y ¼ �jy; f̂ eq;�

7 � peq;�
xx ¼

ðj2x�j2y Þ
cq ; f̂ eq;�

8 � peq;�
xy ¼

jxjy
cq . The

definition of the components of the equilibrium moments are provided in Appendix A.

For the D3Q19 model, they become: f̂ eq;�
0 ¼ q; f̂ eq;�

1 � eeq;� ¼ �11qþ 19 j
!
� j
!

cq ; f̂ eq;�
2 � e2;eq;� ¼ 3q� 11

2
j
!
� j
!

cq ; f̂ eq;�
3 ¼

jx; f̂
eq;�
4 � qeq;�

x ¼ � 2
3 jx; f̂ eq;�

5 ¼ jy; f̂ eq;�
6 � qeq;�

y ¼ � 2
3 jy; f̂ eq;�

7 ¼ jz; f̂ eq;�
8 � qeq;�

z ¼ � 2
3 jz; f̂ eq;�

9 � 3peq;�
xx ¼ ½3j2x� j

!
� j
!
�

cq ; f̂ eq;�
10 � 3peq;�

xx ¼
3 � 1

2 peq;�
xx

	 

; f̂ eq;�

11 � peq;�
ww ¼

½j2y�j2z �
cq ; f̂ eq;�

12 � peq;�
ww ¼ � 1

2 peq;�
ww ; f̂ eq;�

13 � peq;�
xy ¼

jxjy
cq ; f̂ eq;�

14 � peq;�
yz ¼

jyjz
cq ; f̂ eq;�

15 � peq;�
xz ¼ jxjz

cq ; f̂ eq;�
16 ¼ 0; f̂ eq;�

17 ¼ 0;

f̂ eq;�
18 ¼ 0.

A general observation is that only the non-linear terms in the components of the equilibrium moments are precondi-
tioned by the parameter c. This is consistent with the argument that the hydrodynamic convective effects, which are
non-linear, emerge from relaxation process during collisions should be contained in these terms; they should be precondi-
tioned to match the faster propagation of density perturbations, which are represented by linear terms in the equilibrium
moments. It may be noted that an alternative approach to preconditioning the equilibria has been proposed recently [32].

The preconditioned components of the source terms
bS� ¼ bS�0; bS�1; bS�2; . . . ; bS�bh iy
ð11Þ
can be written, for the D2Q9 model as: bS�0 ¼ 0; bS�1 ¼ 6 ðFxuxþFyuyÞ
c2 ; bS�2 ¼ �6 ðFxuxþFyuyÞ

c2 ; bS�3 ¼ Fx
c ;
bS�4 ¼ � Fx

c ;
bS�5 ¼ Fy

c ;
bS�6 ¼ � Fy

c ;
bS�7 ¼

2 ðFxux�FyuyÞ
c2 ; bS�8 ¼ ðFxuyþFyuxÞ

c2 .
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The corresponding components of bS� for the D3Q19 model are: bS�0 ¼ 0; bS�1 ¼ 38 ðFxuxþFyuyþFzuzÞ
c2 ; bS�2 ¼ �11

ðFxuxþFyuyþFzuzÞ
c2 ; bS�3 ¼ Fx

c ;
bS�4 ¼ � 2

3
Fx
c ;
bS�5 ¼ Fy

c ;
bS�6 ¼ � 2

3
Fy

c ;
bS�7 ¼ Fz

c ;
bS�8 ¼ � 2

3
Fz
c ;
bS�9 ¼ 2 ð2Fxux�Fyuy�FzuzÞ

c2 ; bS�10 ¼ �
ð2Fxux�Fyuy�FzuzÞ

c2 ;bS�11 ¼ 2 ðFyuy�FzuzÞ
c2 ; bS�12 ¼ �

ðFyuy�FzuzÞ
c2 ; bS�13 ¼

ðFxuyþFyuxÞ
c2 ; bS�14 ¼

ðFyuzþFzuyÞ
c2 ; bS�15 ¼

ðFxuzþFzuxÞ
c2 ; bS�16 ¼ 0; bS�17 ¼ 0; bS�18 ¼ 0.

The preconditioning of the moment projections of the source terms may also be compactly written as
bS� ¼ PSbS; ð12Þ
where
PS ¼ diag 1;
1
c2 ;

1
c2 ;

1
c
;
1
c
;
1
c
;
1
c
;

1
c2 ;

1
c2

� �
ð13Þ
for the D2Q9 model, and
PS ¼ diag 1;
1
c2 ;

1
c2 ;

1
c
;
1
c
;
1
c
;
1
c
;
1
c
;
1
c
;

1
c2 ;

1
c2 ;

1
c2 ;

1
c2 ;

1
c2 ;

1
c2 ;

1
c2 ;1;1;1

� �
ð14Þ
for the D3Q19 model, where the components of the unpreconditioned source terms bS are given in Appendix A.
Clearly, the external forces have a first-order effect on the convective motion of the fluid, and thus to ‘‘condition” the mo-

ments linearly influenced by such forces, the moment projections need to be preconditioned by the inverse of c. On the other
hand, other moments are effected by the external forces at second order. These include the ‘‘work” contribution by their
interaction with the fluid motion on the moment corresponding to kinetic energy (see Appendix A). Similarly, the moment
projections of the source terms for the momentum flux tensors have second-order influence. In general, the Chapman–En-
skog analysis reveals that all higher order moments that involve non-linear effects from interaction of external forces and
fluid motion are much slower than the fluid motion itself and needs to be preconditioned by the inverse of the square of
the preconditioning parameter, i.e. 1=c2 (see Appendix B).

For the preconditioned collision relaxation time matrix
bK� ¼ diagðs�0; s�1; . . . ; s�bÞ; ð15Þ
some of the relaxation times s�a, i.e.those corresponding to hydrodynamic modes, can be related to the transport coeffi-
cients.The rest, i.e.those for the kinetic modes, can be chosen through a von Neumann stability analysis of the linearized
GLBE [36,37].For the D2Q9 model, we have 1

s�1
¼ 3 f

cþ 1
2, where f is the bulk viscosity, and s�7 ¼ s�8 ¼ s�m, where 1

s�m
¼ 3 m

cþ 1
2, with

m being shear viscosity.For the kinetic modes, we have [36] s�1 ¼ 1:63, s�2 ¼ 1:14 and s�4 ¼ s�6 ¼ 1:92.On the other hand, for the
D3Q19 model [37], we have, for the hydrodynamic modes, 1

s�1
¼ 9

2
f
cþ 1

2, s�9 ¼ s�11 ¼ s�13 ¼ s�14 ¼ s�15 ¼ s�m, where 1
s�m
¼ 3 m

cþ 1
2 and for

the kinetic modes [37], s�1 ¼ 1:19, s�2 ¼ s�10 ¼ s�12 ¼ 1:4,s�4 ¼ s�6 ¼ s�8 ¼ 1:2 and s�16 ¼ s�17 ¼ s�18 ¼ 1:98.
The hydrodynamic fields, i.e., the density q, velocity u! and pressure p obtained from the solution of preconditioned GLBE,

satisfy the equivalent preconditioned compressible NSE (see Appendix B), and can be written as
q ¼
Xb

a¼0

fa; j
!
� q u!¼

Xb

a¼0

fa e!a þ
1
2

F
!

c
dt; p ¼ c�2s q; ð16Þ
where c�s ¼
ffiffifficp cs with cs ¼ c=

ffiffiffi
3
p

. The preconditioning of the GLBE effectively reduces the speed of sound by a factor
ffiffifficp . As a

result, the disparity between the propagation speed of density perturbation and that of fluid motion is decreased by decreas-
ing the parameter c. Moreover, the ‘‘effective” Mach number after preconditioning is Ma� ¼ u=c�s ¼ Ma=

ffiffi
ð

p
cÞ. It may be noted

that a Chapman–Enskog analysis of the GLBE carried out in Appendix B also shows how the evolution of kinetic modes, in
addition to the hydrodynamic modes of interest, are affected by preconditioning. It is evident that the structure of the pre-
conditioned GLBE with forcing term is very similar to that without preconditioning, involving only local scaling of the equi-
librium moments, the moment projections of source terms and the relaxation matrix. As a result, the optimized
computational procedure for GLBE with forcing term described in the previous section can be fully exploited for the precon-
ditioned version.
3.1. Limiting form: Preconditioned SRT-LBE with forcing term

When all the relaxation parameters are set to the same constant, i.e. sa ¼ 1=s�, we arrive at the SRT-LBE, which can be
conveniently written as the following collision and streaming steps, respectively, where both steps are expressed in particle
velocity space:
~f að x!; tÞ ¼ � 1
s�

fa � f eq;�
a

	 

þ 1� 1

2s�

� �
S�adt ; ð17Þ
where fa � fað x!; tÞ, f eq;�
a � f eq;�

a ð x!; tÞ, and S�a � S�að x!; tÞ, and
fað x!þ ea
!dt; t þ dtÞ ¼ ~f að x!; tÞ: ð18Þ
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Here, f eq;�
a is the preconditioned equilibrium distribution
f eq;�
a ¼ wa 1þ 3ea

!� u!þ 9
2c
ðea
!� u!Þ2 � 1

2c
u!� u!

� �
: ð19Þ
The hydrodynamic fields can be obtained from the distribution functions in the same manner as before, i.e. from Eq. (16).
One important consideration is in obtaining the correct expression for the corresponding preconditioned source terms. They
can be obtained simply by an inverse transformation of the moment projections of preconditioned source terms from Eq.
(12). That is
S� ¼ T �1bS� ¼ T �1PSbS: ð20Þ
Explicit evaluation of this equation, Eq. (20), yields
S�a ¼ wa 3
e!a � u!

c

� �
� F
!

c
þ 9
ðea
!� u!Þ e!a � F

!

c2

2664
3775; ð21Þ
which is the desired expression for the source term of the SRT-LBE with preconditioning. It may be noted that it is essential
to maintain the above form of preconditioned source term to correctly recover the corresponding preconditioned hydrody-
namic behavior. On the other hand, for example, if, one naïvely sets
S�a ¼ wa

3ð e!a � u!Þ � F
!þ 9ðea

!� u!Þ e!a � F
!h i

c
; ð22Þ
a Chapman–Enskog analysis of the resulting SRT-LBE (not explicitly shown here, for brevity) yields macrodynamical equa-
tions with non-vanishing spurious terms (with c < 1). The i-th Cartesian component of these extra spurious terms to the cor-
responding preconditioned momentum equations turns out to be
Extra termi ¼ oj
ðc� 1Þ

c2 s� � 1
2

� �
dtðFiuj þ FjuiÞ

� �
ð23Þ
These terms can indeed dominate with particularly strong preconditioning at lower c, when ðc� 1Þ=c2 can become very
large, particularly for spatially and temporally dependent external forces. For example, simulation of MHD problems, where
Lorentz forces can vary both in space and time, using a preconditioned SRT-LBE with Eq. (21) yielded accurate results, but
with Eq. (22), it resulted in grossly wrong behavior. This stresses the critical importance of properly preconditioning forcing
terms, as the temporal change in the effect of the external forces on various physical processes during collisional relaxation
are different. In this regard, analysis of their contributions in moment space, as shown above, is particularly revealing: the
individual contributions of the external forces spanned in the moment space need to be separately preconditioned depend-
ing on the nature of their effects on the moments.
4. Preconditioned vector lattice kinetic equation for magnetic induction

As an illustration of preconditioning an extended system of LBE for complex fluid flows subjected to external forces, we
will now discuss preconditioning lattice kinetic equations for the magnetic induction equation required for simulation of
MHD flows. Dellar [51] concluded that a vector formulation of the kinetic equation is necessary to properly recover the mag-
netic induction equation and constructed a 2D model to accomplish this, which was extended to 3D by Breyannis and
Valeougeorgis [52]. The GLBE with forcing term is used in conjunction with such a lattice kinetic equation, with the latter
providing the Lorentz force field to the former.

In addition to the propagation of the density perturbation as sound waves with speed cs, MHD flows are characterized by
the propagation of perturbation of magnetic induction, the so-called Alfvén waves. If Bi is the Cartesian component of mag-
netic induction, we can obtain the corresponding Alfvén velocity as VA;i ¼ Bi=

ffiffiffiffiffiffiffiqlp
, where q and l are the density and mag-

netic permeability, respectively. Thus, we can define a local Alfvén number Al ¼ VA;i=cs, and Dellar [51] constructed a lattice
kinetic equation that recovers the magnetic induction equation applicable at low Al, with deviations OðAl2Þ. In this scaling,
OðVA;iÞ � OðuiÞ, or OðAlÞ � OðMaÞ. Thus, in MHD flows, there is an additional disparity between the speed of perturbation of
the magnetic induction field and the speed of sound, The condition number, in this case, is inversely proportional to the
Alfvén number, i.e. Oð1=AlÞ. Preconditioning the lattice kinetic equation accelerates its steady state convergence by reducing
the disparity between such characteristic speeds in MHD flows.

We now develop a preconditioning formulation for a unified vector lattice kinetic equation for magnetic induction appli-
cable in both 2D and 3D. Unlike the case of fluid flow, which has fourth-order isotropy requirements on lattice velocity mod-
els to correctly recover viscous stress tensor, the magnetic induction imposes lower order symmetry requirements. Thus, we
need only a smaller number of particle velocity directions for magnetic induction ea

!m, and following previous work, we con-
sider a D2Q5 model
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e!m
a ¼

ð0; 0Þ a ¼ 0
ð�1;0Þ; ð0;�1Þ a ¼ 1; . . . ;4

�
ð24Þ
and a D3Q7 model
e!m
a ¼

ð0; 0;0Þ a ¼ 0
ð�1;0;0Þ; ð0;�1; 0Þ; ð0;0;�1Þ a ¼ 1; . . . ;6

�
ð25Þ
in 2D and 3D, respectively. The preconditioned lattice kinetic equation can, then, be written in terms of the following col-
lision and streaming steps, respectively:
~gajð x!; tÞ ¼ � 1
s�m

gaj � geq;�
aj

� �
ð26Þ
where gaj � gajð x!; tÞ and geq;�
aj � geq;�

aj ð x!; tÞ, and
gajð x!þ e!m
ajdt ; t þ dtÞ ¼ egajð x!; tÞ; ð27Þ
where gaj is the vector distribution function in index notation a ¼ 0;1; . . . ; bm. Here, bm ¼ 4 and bm ¼ 6 in 2D and 3D, respec-
tively. The subscript Roman indices i, j, etc., represent Cartesian components of the coordinate directions. Assuming the usual
summation convention of repeated indices, the Cartesian component of the preconditioned vector equilibrium distribution
function geq;�

aj is given as
geq;�
aj ¼Wa Bj þ

em
ak

hm

ukBj � Bkuj

cm

� �� �
; ð28Þ
where
Wa ¼
1=Nm a ¼ 0
1=ð2NmÞ a ¼ 1; . . . ; bm

�
ð29Þ
and hm ¼ 1=Nm, with Nm ¼ 3 and Nm ¼ 4 in 2D and 3D, respectively. Here, Bj is the Cartesian component of the magnetic
induction and cm is the preconditioning parameter, with 0 < cm 6 1. Thus, the preconditioning is carried out on the non-lin-
ear part of the vector equilibrium distribution, Eq. (28), which represents the transport of magnetic induction field by the
fluid motion. The preconditioned relaxation time s�m is related to the magnetic diffusivity of the fluid gm, where
gm ¼ 1=ðlrÞ with l and r being the magnetic permeability and electrical conductivity, respectively, and is given as
s�m ¼
gm

cmhm
þ 1

2
: ð30Þ
Once the vector distribution function is calculated, the components of the magnetic induction Bi and the current density Ji

can be obtained by taking their zeroth and first moments as
Bi ¼
Xbm

a¼0

gai ð31Þ
and
Ji �
1
l
ðr!	 B

!Þi ¼ �
1
l

1
s�mhm

�ijk

Xbm

a¼0

eakgaj � eakgeq;�
aj

� �
; ð32Þ
where �ijk is the Levi–Civita or the third-order permutation tensor. It can be shown that the preconditioned vector lattice
kinetic equation can recover the corresponding preconditioned lattice induction equation given as follows (see Appendix C):
otBi þ
1
cm
rjðujBi � BjuiÞ ¼

1
cm

ojðgmojBiÞ: ð33Þ
As shown by Dellar [51], the magnetic induction will remain solenoidal, i.e. oiBi ¼ 0, provided the initial condition on the
magnetic induction satisfies the divergence free condition.

The interaction of the magnetic induction and the current density gives rise to the Lorentz force on the fluid flow. This
force can be written as
F
!

Lorentz ¼ J
!	 B

! ð34Þ

and enters as F

!¼ F
!

Lorentz in the preconditioned GLBE discussed in the previous section.

4.1. Achieving low magnetic Reynolds number or magnetic Prandtl Number at steady state

If L, u0, B0 are the characteristic length, velocity and magnetic induction scales, respectively, then we can non-dimension-
alize various quantities as r! Lr!, t  ðu0=LÞt, u u=u0 and B B=B0, and obtain the non-dimensional form of magnetic
induction equation, Eq. (C.10) as
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cmotBi þrjðujBi � BjuiÞ ¼ oj
1

Rem
ojBi

� �
; ð35Þ
where Rem ¼ u0L=gm is the magnetic Reynolds number and the corresponding dimensionless current density is
J
!¼ ð1=RemÞr

!	 B
!

.
Now, in many practical MHD applications, particularly for liquid metals, Rem is relatively very small, or so is the magnetic

Prandtl number Prm, which is given by Prm ¼ m=g ¼ Rem=Re: Rem 
 Oð1Þ and Prm 
 Oð1Þ. To achieve lower Rem or Prm, we
need to make gm smaller, which, in turn, from Eq. (30), means reducing sm. However, true for a typical lattice based method,
as sm approaches 0.5, it can cause numerical instability. This situation can be remedied for the steady state situation by con-
sidering the following: at steady state, we have rjðujBi � BjuiÞ ¼ oj

1
Rem

ojBi

� �
, to which we apply a scaling factor v as

vrjðujBi � BjuiÞ ¼ oj
1

Rem
ojBi

� �
. This effectively changes Rem to vRem at steady state. Thus, we can write Rem;eff ¼ vRem, result-

ing in Prm;eff ¼ vPrm. In the context of preconditioning, a lattice kinetic scheme for this ‘‘effective” steady state magnetic
induction equation can readily be constructed.

Thus, in dimensional form, we need to construct a scaled lattice kinetic scheme with preconditioning for the following
macroscopic equation
otBi þ
v
cm
rjðujBi � BjuiÞ ¼

1
cm

ojðgmojBiÞ: ð36Þ
The magnetic field satisfying this equation, Eq. (36), can be obtained by solving the above preconditioned lattice kinetic
scheme, i.e. Eqs. (26) and (27), with its associated auxiliary equations, except for the following changes in the computation
of vector equilibrium distribution and current density:
geq;�
aj ¼Wa Bj þ

em
ak

hm

v
cm
ðukBj � BkujÞ

� �
ð37Þ
and
Ji �
1
lv ðr
!	 B

!Þi ¼ �
1
lv

1
s�mhm

�ijk

Xbm

a¼0

eakgaj � eakgeq;�
aj

� �
: ð38Þ
5. Results and discussion

We will now present investigations of the preconditioned computational approach presented in the previous sections by
means of a set of canonical examples. Unless otherwise stated, all the results will be expressed in the natural lattice units of
the method, i.e. we use the lattice spacing dx as the length scale and the particle velocity c as the velocity scale (with dx=c
used to scale the temporal quantities).

First, we simulate the simple classical problem of flow with a fluid viscosity m between parallel plates spaced 2L apart and
driven by a pressure gradient �dp=dx, i.e. plane Poiseuille flow using the preconditioned GLBE with forcing term. We con-
sider the domain to be periodic in the streamwise and spanwise directions, and thus the pressure gradient is applied as a
body force. No slip conditions at the walls are specified by using the half-way or link bounce back scheme [53]. For this setup,
if F
!¼ �ðdp=dxÞbi is the driving force, the maximum fluid velocity occurring at the center is umax ¼ FL2=ð2q0mÞ, where q0 is the

nominal fluid density. We set L ¼ 32, m ¼ 0:001 and q0 ¼ 1, and apply a pressure gradient such that the maximum velocity is
umax ¼ 0:00051, or Ma ¼ 0:0008333. The Reynolds number based on the above velocity and L becomes Re ¼ 32:6. Fig. 1 shows
the convergence history with different values of preconditioning parameter c (no preconditioning corresponds to c ¼ 1) for
this external force driven flow problem with relatively low Ma. The convergence to steady state is measured by the second-
norm of the residual error of the velocity, kuðt þ 10Þ � uðtÞk2. It can be seen that preconditioning the GLBE with forcing term
dramatically accelerates the steady state convergence for this problem, in particular, by more than two orders of magnitude
with strong preconditioning carried out using c ¼ 0:001.

Next, we simulate plane Poiseuille flow with relatively higher Ma and Re. As before, we set L ¼ 64, but use m ¼ 0:005 and
apply a pressure gradient such that Ma ¼ 0:00222 and Re ¼ 163:8. The convergence history for this problem is presented in
Fig. 2. Again, a significant reduction in the number of time steps for convergence to steady state is achieved through precon-
ditioning. On the other hand, it appears that to maintain numerical stability the minimum possible value of the precondi-
tioning parameter c needs to be higher at higher Ma. The computed velocity profile for problem with preconditioning
using c ¼ 0:1 compared with the analytical solution is shown in Fig. 3. Excellent agreement is seen.

When all the other parameters are maintained constant, the deviation of the computed solution from the analytical solu-
tion is related to the ratio m=c, which, in turn, is related to the hydrodynamic relaxation time in the preconditioned GLBE as
1
s�m
¼ 3 m

cþ 1
2 (see Section 3). Fig. 4 shows the relative error in the computed velocity as a function of m=c. It is evident that the

error, which remains relatively small, is linearly proportional to this ratio. Thus, by maintaining low values of m=c, the error
can be correspondingly kept small.

We now investigate the influence of preconditioning the GLBE on numerical stability for the case of plane Poiseuille flow
considered above. This can be done by systematically carrying out simulations at different characteristic parameters, includ-
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ing c, m and Ma, and determine the threshold at which the computations become unstable, i.e. small variations growing expo-
nentially with time. The results can be conveniently expressed in the form of a regime map or parameter space that delin-
eates stable and unstable parameter sets. Fig. 5 shows the stability–instability parameter space determined by the maximum
flow velocity umax and the preconditioning parameter c for different fluid viscosity m. Arrows normal to the curves pointed
upwards indicate stable parameter space, while those pointed downwards pertain to unstable space. This regime map is par-
ticularly revealing. First, for a given fluid viscosity m, as the maximum velocity or, equivalently, Ma is reduced, lower values of
the preconditioning parameter c can be used, i.e. the GLBE can be strongly preconditioned resulting in greater computational
gains while maintaining numerical stability. The fluid viscosity appears to significantly affect the stability parameter space.
For a given umax, the minimum possible value of c is higher at higher values of m. That is, the extent of preconditioning is
greater with lower fluid viscosities. Interestingly, Fig. 5 also shows that the delineating curve has a linear functional relation-
ship between c and umax at higher m, while at lower m, the stability envelope is nearly flat with a constant c for a wide var-
iation of umax. Thus, in general, the benefits of preconditioning, while maintaining numerical stability, is greater at lower Ma
and lower m. It may be noted that the use of GLBE in lieu of SRT-LBE in the context of preconditioning results in significant
enhancement of numerical stability, as will be shown later for fully 3D problems characterized by complex fluid motions.
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Let us now consider a problem in which we can investigate preconditioning a system of LBE, where the external force
impressed on the fluid is a also a strong function of the fluid motion itself. This is, we consider the classical Hartmann flow,
consisting of pressure driven flow between two parallel plates in the presence of a magnetic field perpendicular to the walls.
In addition to the Reynolds number Re, this problem is characterized by the Hartmann number Ha, which is given by
Ha ¼ B0L

ffiffiffiffi
r
qm

q
, where B0 and r are the applied magnetic field strength and fluid’s electrical conductivity, respectively, and

other parameters are as previously defined.
We now simulate this problem by using a vector lattice kinetic scheme preconditioned by parameter cm for magnetic

induction (as in Section 4), in conjunction with the GLBE with forcing term preconditioned by parameter c (as in Section
3). The Lorentz force arising from the interaction of the magnetic induction and velocity field is introduced into consistently
preconditioned forcing terms. To simulate the flow of liquid metals at low magnetic Reynolds number Rem or magnetic Pra-
ndtl number Prm, we further apply a scaling factor v to the preconditioned lattice kinetic scheme (as in Section 4.1).

Fig. 6 shows the computed steady state velocity profile of Hartmann flow with Re ¼ 286, Ha ¼ 71:6, Prm ¼ 1:0	 10�6. This
is achieved by using transport coefficients of m ¼ 0:004, and g ¼ 0:004, and L ¼ 64, along with preconditioning and scaling
factors of c ¼ 0:05, cm ¼ 0:05 and v ¼ 1:0	 10�6. The corresponding computed steady state magnetic induction profile is
presented in Fig. 7. The flattening of the velocity profile observed is characteristic of MHD flows due to the Lorentz force,
with most of the velocity variation being confined to the region very close to the wall, in the so-called Hartmann layer. In
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general, the thickness of Hartmann layer dH is inversely proportional to the Hartmann number ðdH � 1=HaÞ. The analytical
solution for this problem is provided in standard texts on MHD (e.g., Ref. [54]). It is seen that these profiles computed using
preconditioned system of LBE are in excellent agreement with corresponding analytical solutions.

Let us now investigate the behavior of steady state convergence of this problem by applying various levels of precondi-
tioning. Fig. 8 shows the convergence history obtained at various values of cm at a fixed value of c, i.e. c ¼ 0:05. Interestingly,
preconditioning only the GLBE with forcing term, but not the vector lattice kinetic scheme (i.e. with cm ¼ 1:0) results in the
slowest convergence. However, as we increase the extent of preconditioning by lowering the values of cm, the number of
time steps to reach steady state is significantly reduced. The benefits of preconditioning are greatest when both the precon-
ditioning parameters are equal to one another, i.e. c ¼ cm ¼ 0:05. Moreover, it is also interesting to observe that if the lattice
kinetic scheme is more strongly preconditioned than that for the GLBE, i.e. cm < c, the approach to steady state becomes
slower as compared with the case with cm ¼ c. This is consistent with the scaling OðAlÞ � OðMaÞ, that is, the propagation
speeds of both magnetic field and velocity field by the fluid convective motion occur at similar time scales. Both these
are slower than the speed of density perturbation and, thus, preconditioning the terms representing these two physical pro-
cesses by the same magnitudes would result in the fastest steady state convergence.
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This notion is further illuminated by considering cases in which the GLBE is used without preconditioning (c ¼ 1), while the
lattice kinetic scheme is solved with different values of the preconditioning parameter cm. The results with these tests are plot-
ted in Fig. 9. It shows that the convergence rate actually becomes slower if only one of the LBEs is preconditioned, no matter
what the value of the preconditioning parameter is used, when the other LBE is used without preconditioning. Thus, precon-
ditioning should be done for both the LBE and at the same levels. This is further corroborated by considering a series of cases
with c ¼ cm, as shown in Fig. 10, with lower values for these parameters providing more rapid convergence to steady state.

It may be noted that, in a recent work, we studied a series of problems with very thin Hartmann layers by introducing
stretched grids through the Roberts boundary layer transformation [55] by means of an interpolation-supplemented stream-
ing step in the LBE framework [43]. In particular, using this modified LBE, we simulated Hartmann flow with Ha as high as
10,000 in very good comparison with corresponding asymptotic analytical results, leading to very significant reduction in the
number of grid nodes as compared to using standard LBE using uniform grids [43].

We now present some applications of preconditioned LBE for simulation of 3D wall bounded shear flows of electrically
conducting fluids such as liquid metals mediated by magnetic fields. In this regard, we consider a cubic cavity of side length
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W containing liquid metal which is driven by its top lid moving at velocity U0. An external magnetic field B0 is applied par-
allel to the lid surface and perpendicular to its direction of motion. A schematic of this flow problem is shown in Fig. 11.

We consider the top lid moving with a velocity U0 ¼ 0:0235 imparting shear on the fluid of viscosity m ¼ 0:015 contained
in a cavity discretized by 643 grid nodes, such that the Reynolds number is 100. Initially, we clarify the advantage of precon-
ditioning for this highly 3D flow even for a simpler case that does not involve the application of magnetic field. The velocity
boundary conditions at the walls, including the top moving lid, were imposed by using a link bounce back scheme [53]. For
the moving wall, this scheme adds contributions due to appropriate momentum to the distribution functions. The conver-
gence histories in the absence of an external magnetic field for different values of c are shown in Fig. 12. It is seen that sig-
nificant reduction in the number of time steps to reach steady sate, is obtained with preconditioning for this problem.

We now consider the case involving the application of an external magnetic field such that the Hartmann number is 45,
which is obtained by setting g ¼ 0:015, and the magnetic Prandtl number is 5:625	 10�7. We consider the induced magnetic
fields at far-off distances outside of the cavity to be zero as our boundary condition. This is achieved by considering a larger
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Fig. 11. Schematic illustration of a three-dimensional (3D) cubical cavity with its top lid moving at velocity U0 in the presence of an external magnetic field
B0, applied parallel to the lid surface and perpendicular to its direction of motion.
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computational domain for the magnetic induction field encompassing the cavity walls. On these extended computational
boundaries, we implement a zero induced field condition through an extrapolation method [56] applied to the vector distri-
bution functions. The corresponding convergence histories for this 3D MHD flow problem are shown in Fig. 13. Again, a sig-
nificant reduction in the number of time steps to reach steady state is achieved through preconditioning. Moreover, to put
things in perspective, when the SRT-LBE was employed for the same grid resolution as above, the simulations were found to
be stable only for m P 0:166. On the other hand, with GLBE, as indicated above, we could use a much lower value for 0.015
while maintaining numerical stability. Thus, for this problem, by using the preconditioned GLBE rather than the precondi-
tioned SRT-LBE, the numerical stability is enhanced by almost an order of magnitude.

We will now investigate the accuracy of preconditioned LBE for this problem. Figs. 14–16 show the computed velocity
profiles for the cases with Ha ¼ 0 (i.e. no magnetic field) and Ha ¼ 45 and compared with recent results from simulations
carried out using finite-difference method (FDM) involving the solution of the Navier–Stokes equations [57]. The presence
of Lorentz forces appears to significantly influence the characteristics of fluid motion in this 3D problem. In particular,
the velocity profile appears to be markedly flattened by the presence of magnetic field. The computed results are in excellent
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B0, applied perpendicular to both the lid surface and its direction of motion.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

z/W

u/
U

0

χ = Prm = 5.6 x 10−7

χ = Prm = 1.0
 Re  = 100
Ha  = 45

γ = γm = 0.1

Fig. 18. Effect of magnetic Prandtl number Prm on computed velocity profile u along the line x ¼W=2 and y ¼W=2 for simulation of 3D cubical lid-driven
cavity in the presence of magnetic field perpendicular to the lid surface and its direction of motion; Re ¼ 100 and Ha ¼ 45.

762 K.N. Premnath et al. / Journal of Computational Physics 228 (2009) 746–769



0 0.2 0.4 0.6 0.8 1
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

y/W

u/
U

0

χ = Prm = 5.6 x 10−7

χ = Prm = 1.0Re = 100
Ha = 45

γ = γm = 0.1

Fig. 19. Effect of magnetic Prandtl number Prm on computed velocity profile u along the line x ¼W=2 and z ¼W=2 for simulation of 3D cubical lid-driven
cavity in the presence of magnetic field perpendicular to the lid surface and its direction of motion; Re ¼ 100 and Ha ¼ 45.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

x/W

w
/U

0

χ = Prm = 5.6 x 10−7

χ = Prm = 1.0

Re = 100
Ha = 45

γ = γm = 0.1

Fig. 20. Effect of magnetic Prandtl number Prm on computed velocity profile u along the line y ¼W=2 and z ¼W=2 for simulation of 3D cubical lid-driven
cavity in the presence of magnetic field perpendicular to the lid surface and its direction of motion; Re ¼ 100 and Ha ¼ 45.

K.N. Premnath et al. / Journal of Computational Physics 228 (2009) 746–769 763
agreement with the FDM. It was noticed that the velocity profile bounded by the Hartmann walls (i.e. those perpendicular to
the direction of B0, see Fig. 11), is somewhat sensitive to the grid resolution employed. Morley et al. [57], who studied this
problem using different numerical schemes with different grid resolutions, also observed such effects. In this work, we find
that by further refining the grid, i.e. by doubling the number of grid nodes in each direction, the computed solution converges
to the FDM results.

For the sake of completeness, we will now consider 3D MHD driven cavity flow with the magnetic field applied in a dif-
ferent manner, i.e. B0 perpendicular to the lid surface and its direction of motion as shown in Fig. 17.

We will consider the effect of magnetic Prandtl number Prm for this case by employing different values of the scaling fac-
tor v in the preconditioned LBE. Figs. 18–20 show the velocity profiles along different directions for Re ¼ 100, Ha ¼ 45 with
c ¼ cm ¼ 0:1 for two values of Prm, i.e., Prm ¼ 5:6	 10�7 and Prm ¼ 1:0, with the former corresponding to liquid metal. It is
noticed that the values of Prm appears to strongly modulate the velocity field for those cases in which they are bounded on
both sides by stationary walls (Figs. 19 and 20). Moreover, the direction of the application of magnetic field appears to have a
profound influence on the flow field. In particular, in contrast to the previous case, we notice the presence of wall jet like
features when B0 is perpendicular to both the surface of the top lid and its direction of motion (see Fig. 21).
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and square of energy, respectively; jx and jy are the components of the momentum, i.e. jx ¼ qux and jy ¼ quy, qx, and qy are the
components of the energy flux, and pxx and pxy are the components of the symmetric traceless viscous stress tensor.

The corresponding components of the equilibrium moments, which are functions of the conserved moments, i.e. density
q and momentum j

!
, are as follows [36]:
f̂ eq
0 ¼ q; f̂ eq

1 � eeq ¼ �2qþ 3
j
!
� j
!

q
; f̂ eq

2 � e2;eq ¼ q� 3
j
!
� j
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q
; f̂ eq

3 ¼ jx; f̂ eq
4 � qeq

x ¼ �jx; f̂ eq
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f̂ eq
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ðj2

x � j2
yÞ

q
; f̂ eq

8 � peq
xy ¼

jxjy

q
:

The components of the source terms in moment space are functions of external force F
!

and velocity fields u!, and are given
as follows: bS0 ¼ 0; bS1 ¼ 6ðFxux þ FyuyÞ; bS2 ¼ �6ðFxux þ FyuyÞ; bS3 ¼ Fx; bS4 ¼ �Fx; bS5 ¼ Fy; bS6 ¼ �Fy; bS7 ¼ 2ðFxux � FyuyÞ; bS8 ¼
ðFxuy þ FyuxÞ.

A.2. D3Q19 Model

The components of the various elements in the moments are as follows [37]: f̂ 0 ¼ q; f̂ 1 ¼ e; f̂ 2 ¼ e2; f̂ 3 ¼ jx; f̂ 4 ¼ qx;

f̂ 5 ¼ jy; f̂ 6 ¼ qy; f̂ 7 ¼ jz; f̂ 8 ¼ qz; f̂ 9 ¼ 3pxx; f̂ 10 ¼ 3pxx; f̂ 11 ¼ pww; f̂ 12 ¼ pww; f̂ 13 ¼ pxy; f̂ 14 ¼ pyz; f̂ 15 ¼ pxz; f̂ 16 ¼ mx; f̂ 17 ¼ my; f̂ 18 ¼
mz. Here, q is the density, e and e2 represent kinetic energy that is independent of density and square of energy, respectively; jx,
jy and jz are the components of the momentum, i.e. jx ¼ qux, jy ¼ quy, jz ¼ quz, qx, qy, qz are the components of the energy flux,
and pxx, pxy, pyz and pxz are the components of the symmetric traceless viscous stress tensor; The other two normal components
of the viscous stress tensor, pyy and pzz, can be constructed from pxx and pww, where pww ¼ pyy � pzz. Other moments include pxx,
pww, mx, my and mz. The first two of these moments have the same symmetry as the diagonal part of the traceless viscous tensor
pij, while the last three vectors are parts of a third rank tensor, with the symmetry of jkpmn.

The corresponding components of the equilibrium moments, which are functions of the conserved moments, i.e. density
q and momentum j
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, are as follows [37]:
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The components of the source terms in moment space are functions of external force F
!

and velocity fields u!, and are given
as follows [46]:
bS0 ¼ 0; bS1 ¼ 38ðFxux þ Fyuy þ FzuzÞ; bS2 ¼ �11ðFxux þ Fyuy þ FzuzÞ; bS3 ¼ Fx; bS4 ¼ �
2
3

Fx;

bS5 ¼ Fy; bS6 ¼ �
2
3

Fy; bS7 ¼ Fz; bS8 ¼ �
2
3

Fz; bS9 ¼ 2ð2Fxux � Fyuy � FzuzÞ; bS10 ¼ �ð2Fxux � Fyuy � FzuzÞ;bS11 ¼ 2ðFyuy � FzuzÞ; bS12 ¼ �ðFyuy � FzuzÞ; bS13 ¼ ðFxuy þ FyuxÞ; bS14 ¼ ðFyuz þ FzuyÞ;bS15 ¼ ðFxuz þ FzuxÞ; bS16 ¼ 0; bS17 ¼ 0; bS18 ¼ 0:
Appendix B. Chapman–Enskog analysis of the preconditioned GLBE with forcing term for D2Q9 model

In this section, by employing the Chapman–Enskog multiscale analysis [48,39], we derive the macroscopic dynamical
equations for the preconditioned GLBE with forcing term corresponding to the D2Q9 model. The analysis of the precondi-
tioned GLBE with other two- or three-dimensional models can be carried out in an analogous way. First, we introduce
the expansions
f̂ ¼
X1
n¼0

�n f̂ðnÞ; ðB:1Þ

ot ¼
X1
n¼0

�notn ; ðB:2Þ
where � ¼ dt , along with the Taylor series into the preconditioned GLBE presented in Section 3. Then, recognizing that it was
derived after making use of the transformation �̂f ¼ f̂ � 1=2bS on a second-order time discretization of the source terms to
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make it effectively explicit, and dropping the ‘‘overbar” subsequently for convenience, the following equations are obtained
as consecutive orders of the parameter � in moment space (see Ref. [39] for details)
Oð�0Þ : f̂ð0Þ ¼ f̂eq;�; ðB:3Þ

Oð�1Þ : ðot0 þ bE ioiÞf̂ð0Þ ¼ �bK� f̂ð1Þ þ bS�; ðB:4Þ

Oð�2Þ : ot1 f̂ð0Þ þ ðot0 þ bE ioiÞ I �
1
2
bK�� �

f̂ð1Þ ¼ �bK� f̂ð2Þ; ðB:5Þ
where bE i ¼ T eaiT �1. As it is known that the non-linear terms in the equilibrium moments give rise to slower convective
behavior of the fluid as compared with the propagation speed of the density perturbations, we precondition those terms
by the parameter c to obtain f̂eq;�. The forcing terms in moment space are functions of external forces and velocity fields
as given in Appendix A. We assume that for the components linear in F

!
, we precondition them by c. On the other hand,

we precondition those that are non-linear due to interactions between F
!

and u! by an unknown parameter c1, whose form
will be deduced as part of the analysis. The final expressions for the preconditioned quantities f̂eq;� and S�, as well as bK� are
given in Section 3.

The components of the first-order equations in moment space, i.e. Eq. (B.4) can be written as
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Similarly, the components of the second-order equations in moment space, i.e. Eq. (B.5) are
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To obtain preconditioned hydrodynamical equations, we need to combine the evolution equations of moments correspond-
ing to Eqs. (B.6), (B.9) and (B.11) with Eqs. (B.15), (B.18) and (B.20), respectively. Inspection of these six equations show that
we need explicit expressions for the following non-equilibrium moments: eð1Þ, pð1Þxx and pð1Þxy . Thus, from Eqs. (B.7), (B.13) and
(B.14), we get
eð1Þ ¼ 1
s�1
�ot0 �2qþ 3

j
!
� j
!

cq

 !
þ 6

F
!� u!

c1

" #
ðB:24Þ

pð1Þxx ¼
1
s�6
�ot0

j2
x � j2

y

cq

 !
� ox

2
3

jx

� �
þ oy

2
3

jy

� �
þ 2

Fxux � Fyuy
	 


c1

" #
ðB:25Þ

pð1Þxy ¼
1
s�7
�ot0

jxjy

cq

� �
� ox

1
3

jx

� �
� oy

1
3

jy

� �
þ

Fxuy þ Fyux
	 


c1

� �
ðB:26Þ
Eqs. (B.24)–(B.26) require time derivatives of the density and velocity (or momentum) fields, which can be obtained from
Eqs. (B.6), (B.9) and (B.11) and truncating terms of OðMa2Þ or higher. Thus, we have
ot0

j2
x

q

 !
� 2

Fxux

c
; ot0

j2
y

q

 !
� 2

Fyuy

c
; ot0

jxjy

q

� �
� 2
ðFxuy þ FyuxÞ

c

Substituting the above relations in Eq. (B.24)
eð1Þ ¼ 1
s�1
�2r!� j

!
� 3

2 Fxux
c þ 2 Fyuy

c

c

 !
þ 6

F
!� u!

c1

" #
ðB:27Þ
In order to eliminate the dependence of forcing terms in the above equation, Eq. (B.27), so that the macrodynamical equa-
tions recover correct physics without any spurious effects, we need to set
c1 ¼ c2: ðB:28Þ
Thus, Eq. (B.28) suggests that the moment projections of forcing terms involving non-linear interactions of external force and
velocity fields should be preconditioned by a factor of 1=c2, as they represent slower physical processes than fluid flow itself.
Hence, we get
eð1Þ ¼ �2
1
s�1
r!� j
!
: ðB:29Þ
Similarly,
pð1Þxx ¼ �
2
3

1
s�7
ðoxjx � oyjyÞ; ðB:30Þ
and
pð1Þxy ¼ �
1
3

1
s�8
ðoxjy þ oyjxÞ: ðB:31Þ
So, the preconditioned dynamical equations of the conserved moments are finally obtained by adding Eqs. (B.6), (B.9) and
(B.11) to Eqs. (B.15), (B.18) and (B.20), respectively, after multiplying the latter with dt , and using Eqs. (B.29)–(B.31). They
correspond to the following preconditioned weakly compressible Navier–Stokes equations
otqþ oxjx þ oyjy ¼ 0 ðB:32Þ

ot jx þ
1
c

ox
j2
x

q

 !
þ oy

jxjy

q

� �" #
¼ �1

c
oxpþ 1

c
ox 2m oxjx � 1=3r!� j

!h i
þ fr!� j

!� �
þ 1

c
oyðm½oxjy þ oyjx�Þ þ

Fx

c
ðB:33Þ

ot jy þ
1
c

ox
jxjy

q

� �
þ oy

j2
y

q

 !" #
¼ �1

c
oypþ 1

c
oxðm½oxjy þ oyjx�Þ þ

1
c

oy 2m½oyjy � 1=3r!� j
!
� þ fr!� j

!� �
þ Fy

c
ðB:34Þ
where the pressure field p is given by
p ¼ c
1
3
q ðB:35Þ
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and the transport coefficients, viz., the bulk and shear viscosities, respectively, as
f ¼ c
1
3

1
s�1
� 1

2

� �
dt ðB:36Þ
and
m ¼ c
1
3

1
s�b
� 1

2

" #
dt; b ¼ 7;8 ðB:37Þ
Appendix C. Chapman–Enskog analysis of the preconditioned vector kinetic equation

We now perform the Chapman–Enskog analysis of the preconditioned vector kinetic equation by introducing the
expansions
gai ¼
X1
n¼0

�ngðnÞai ; ðC:1Þ

ot ¼
X1
n¼0

�notn ; ðC:2Þ
with � ¼ dt , in conjunction with the Taylor series [48,51], which result in the following:
Oð�0Þ : gð0Þai ¼ geq;�
ai ; ðC:3Þ

Oð�1Þ : ðot0 þ eajojÞgð0Þai ¼ �
1
s�m

gð1Þai ; ðC:4Þ

Oð�2Þ : ot1 gð0Þai þ 1� 1
2s�m

� �
ot0 þ eajoj
	 


gð1Þai ¼ �
1
s�m

gð2Þai : ðC:5Þ
Now, using the following summational constraints
Pbm

a¼0gð0Þaj ¼ Bj,
Pbm

a¼0eaig
ð0Þ
aj ¼ Kð0Þij ,

Pbm
a¼0gðnÞaj ¼ 0 and

Pbm
a¼0eaig

ðnÞ
aj ¼ KðnÞij for

n P 1, with Kð0Þij ¼
uiBj�Biuj

cm
, and taking zeroth moments of Eqs. (C.4) and (C.5), we get
ot0 Bi þ ojK
ð0Þ
ji ¼ 0; ðC:6Þ

ot1 Bi þ 1� 1
2s�m

� �
ojK

ð1Þ
ji ¼ 0: ðC:7Þ
Taking the first moment, i.e.
Pbm

a¼0eajð�Þ of Eq. (C.4) and using the identity
Pbm

a¼0eajeakgð0ÞÞai ¼ hmdjkBi, where djk is the Kronecker
delta, we get
Kð1Þji ¼ �s�m ot0 K
ð0Þ
ji þ hmojBi

h i
: ðC:8Þ
With the scaling OðBiÞ � OðuiÞ [51] and considering the zeroth-order momentum and magnetic induction equations,
ot0 K

ð0Þ
ji � OðMa3Þ and hence can be neglected. As a result
Kð1Þji � �s�mhmojBi: ðC:9Þ
Finally, adding Eqs. (C.6) and (C.7)	dt and using ot � ot0 þ dtot1 , along with Eq. (C.9), we get the preconditioned magnetic
induction equation
otBi þ
1
cm
rjðujBi � BjuiÞ ¼

1
cm

ojðgojBiÞ; ðC:10Þ
where g ¼ cmhmðs�m � 1=2Þdt .
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